
 1

Posted by Stuart D. Levi and Alex B. Lipton, Skadden, Arps, Slate, Meagher & Flom LLP, on Saturday, May

26, 2018

“Smart contracts” are a critical component of many platforms and applications being built using

blockchain or distributed ledger technology. Below, we outline the background and functions of

smart contracts, discuss whether they can be deemed enforceable legal agreements under

contract law in the United States, and highlight certain legal and practical considerations that will

need to be resolved before they can be broadly used in commercial contexts.

How Smart Contracts Function

“Smart contracts” is a term used to describe computer code that automatically executes all or

parts of an agreement and is stored on a blockchain-based platform. As discussed further below,

the code can either be the sole manifestation of the agreement between the parties or might

complement a traditional text-based contract and execute certain provisions, such as transferring

funds from Party A to Party B. The code itself is replicated across multiple nodes of a blockchain

and, therefore, benefits from the security, permanence and immutability that a blockchain offers.

That replication also means that as each new block is added to the blockchain, the code is, in

effect, executed. If the parties have indicated, by initiating a transaction, that certain parameters

have been met, the code will execute the step triggered by those parameters. If no such

transaction has been initiated, the code will not take any steps. Most smart contracts are written

in one of the programming languages directly suited for such computer programs, such as

Solidity.

At present, the input parameters and the execution steps for a smart contract need to be specific

and objective. In other words, if “x” occurs, then execute step “y.” Therefore, the actual tasks that

smart contracts are performing are fairly rudimentary, such as automatically moving an amount of

cryptocurrency from one party’s wallet to another when certain criteria are satisfied. As the

adoption of blockchain spreads, and as more assets are tokenized or go “on chain,” smart

contracts will become increasingly complex and capable of handling sophisticated transactions.

Indeed, developers already are stringing together multiple transaction steps to form more

complex smart contracts. Nonetheless, we are, at the very least, many years away from code

being able to determine more subjective legal criteria, such as whether a party satisfied a

Editor’s note: Stuart D. Levi is a partner and Alex B. Lipton is an associate at Skadden, Arps,

Slate, Meagher & Flom LLP. This post is based on their Skadden publication.

https://www.skadden.com/professionals/l/levi-stuart-d
https://www.skadden.com/professionals/l/lipton-alex-b

 2

commercially reasonable efforts standard or whether an indemnifications clause should be

triggered and the indemnity paid.

Before a compiled smart contract actually can be executed on certain blockchains, an additional

step is required, namely, the payment of a transaction fee for the contract to be added to the

chain and executed upon. In the case of the Ethereum blockchain, smart contracts are executed

on the Ethereum Virtual Machine (EVM), and this payment, made through the ether

cryptocurrency, is known as “gas.”1 The more complex the smart contract (based on the

transaction steps to be performed), the more gas that must be paid to execute the smart contract.

Thus, gas currently acts as an important gate to prevent overly complex or numerous smart

contracts from overwhelming the EVM.2

Smart contracts are presently best suited to execute automatically two types of “transactions”

found in many contracts: (1) ensuring the payment of funds upon certain triggering events and (2)

imposing financial penalties if certain objective conditions are not satisfied. In each case, human

intervention, including through a trusted escrow holder or even the judicial system, is not required

once the smart contract has been deployed and is operational, thereby reducing the execution

and enforcement costs of the contracting process.

As just one example, smart contracts could eliminate the so-called procure-to-pay gaps. When a

product arrives and is scanned at a warehouse, a smart contract could immediately trigger

requests for the required approvals and, once obtained, immediately transfer funds from the

buyer to the seller. Sellers would get paid faster and no longer need to engage in dunning, and

buyers would reduce their account payable costs. This could impact working capital requirements

and simplify finance operations for both parties. On the enforcement side, a smart contract could

be programmed to shut off access to an internet-connected asset if a payment is not received.

For example, access to certain content might automatically be denied if payment was not

received.

Historical Background

The term “smart contract” was first introduced by computer scientist and cryptographer Nick

Szabo some 20 years ago as a graduate student at University of Washington. According to

Szabo:

New institutions, and new ways to formalize the relationships that make up these institutions, are

now made possible by the digital revolution. I call these new contracts “smart,” because they are

far more functional than their inanimate paper-based ancestors. No use of artificial intelligence is

implied. A smart contract is a set of promises, specified in digital form, including protocols within

which the parties perform on these promises.3

Szabo’s use of quotes around the word “smart” when comparing smart contracts to paper-based

contracts, and his eschewing of artificial intelligence are important. Smart contracts may be

“smarter” than paper contracts because they automatically can execute certain pre-programmed

steps, but they should not be seen as intelligent tools that can parse a contract’s more subjective

1 See “What is the ‘Gas’ in Ethereum?” Cryptocompare, November 18, 2016, available here.
2 Id.
3 Nick Szabo, “Smart Contracts: Building Blocks for Digital Market,” 1996, available here.

https://www.cryptocompare.com/coins/guides/what-is-the-gas-in-ethereum/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html

 3

requirements. Indeed, the classic example of a smart contract offered by Szabo is a vending

machine. Once a purchaser has satisfied the conditions of the “contract” (i.e., inserting money

into the machine) the machine automatically honors the terms of the unwritten agreement and

delivers the snack.

Smart contracts today also find their origin in Ricardian Contracts, a concept published in 1996 by

Ian Grigg and Gary Howland as part of their work on the Ricardo payment system to transfer

assets. Grigg saw Ricardian Contracts as a bridge between text contracts and code that had the

following parameters: a single document that “is a) a contract offered by an issuer to holders, b)

for a valuable right held by holders, and managed by the issuer, c) easily readable by people (like

a contract on paper), d) readable by programs (parsable like a database), e) digitally signed, f)

carries the keys and server information, and g) allied with a unique and secure identifier.”4

One of the difficulties with discussing smart contracts is that the term is used to capture two very

different paradigms. The first involves smart contracts that are created and deployed without any

enforceable text-based contract behind them. For example, two parties reach an oral

understanding as to the business relationship they want to capture and then directly reduce that

understanding into executable code. We refer to these below as “code-only smart contracts.” The

second paradigm involves the use of smart contracts as vehicles to effectuate certain provisions

of a traditional text-based contract, in which the text itself references the use of the smart contract

to effectuate certain provisions. We refer to these as “ancillary smart contracts.”

There is no federal contract law in the United States; rather, the enforceability and interpretation

of contracts is determined at the state level. Thus, while certain core principles apply consistently

across state lines, and there has been a drive to harmonize state laws by the National

Conference of Commissioners on Uniform State Laws, any conclusions regarding smart contracts

must be tempered by the reality that states may adopt different views.

A discussion regarding the enforceability of smart contracts must start with the fundamental

distinction between an agreement and a “contract.” States generally recognize that although two

parties can enter into a variety of “agreements,” a contract means that the agreement is legally

binding and enforceable in a court of law.5 In order to determine enforceability, state courts

traditionally look to whether the common law requirements of offer, acceptance and consideration

are satisfied. These basic requirements surely can be achieved through ancillary smart contracts.

For example, an insurer might develop a flight insurance product that automatically provides the

insured with a payout if a flight is delayed by more than two hours.6 The key terms, such as

delineating how the delay is calculated, can be set forth in a text-based contract, with the actual

formation of the contract (payment of the premium) and the execution (automatic payout upon a

verifiable delay) handled through an ancillary smart contract. Here, the insurer has made a

4 Ian Grigg, “The Ricardian Contract,” available here.
5 See, e.g., “Restatement (Second) of Contracts,” Section 1, American Law Institute, 1981. In the U.S., contract

law is ordinarily a function of state law. Although this article outlines general contract law principles that are common
across states, we note that state law differences may impact the enforceability of smart contracts in certain states.

6 At least one company, AXA, currently offers such a product. See here.

http://iang.org/papers/ricardian_contract.html
https://fizzy.axa/

 4

definite offer for a flight insurance product that is accepted by the insured upon payment of the

premium as consideration.

Although, today, certain contracts must be in writing, and additional formalities may be required

such as those under the Uniform Commercial Code (UCC) and state statutes of

frauds,7 agreements do not always need to be in writing to be held enforceable.8 Thus, many

code-only smart contracts also will be enforceable under state laws governing contracts. Szabo’s

example of a vending machine is instructive in this regard. There, while the buyer has many

implied rights, a contract was formed without any meaningful written terms other than a price

display for each item. Thus, the fact that an agreement is rendered only in code, such as the case

with code-only smart contracts, presents no particular barrier to contract formation outside the

barriers imposed by the UCC and statutes of frauds. Indeed, a variety of laws and legal

constructs have long considered the role of information technology in contract formation.

For example, the Uniform Electronic Transactions Act (UETA) which dates back to 1999 and

forms the basis for state law in 47 states, provides that, with limited exceptions, electronic

records, which include records created by computer programs, and electronic signatures (i.e.,

digital signature using public key encryption technology) be given the same legal effect as their

written counterparts.9 UETA even goes so far as recognizing the validity of “electronic agents,”

which it defines as “a computer program or an electronic or other automated means used

independently to initiate an action or respond to electronic records or performances in whole or in

part, without review or action by an individual.”10 Under UETA, an electronic agent is “capable

within the parameters of its programming, of initiating, responding or interacting with other parties

or their electronic agents once it has been activated by a party, without further attention of that

party,”11 arguably a prescient acknowledgment of smart contracts.

Similarly, the federal Electronic Signatures Recording Act (E-Sign Act) not only recognizes the

validity of electronic signatures and electronic records in interstate commerce, but also provides

that a contract or other record relating to a transaction “may not be denied legal effect, validity, or

enforceability solely because its formation, creation, or delivery involved the action of one or more

electronic agents so long as the action of any such electronic agent is legally attributable to the

person to be bound.”12 The term “electronic agent” means a computer program or an electronic or

other automated means used independently to initiate an action or respond to electronic records

or performances in whole or in part without review or action by an individual at the time of the

action or response.”13

Though an understanding of the current legal framework is important to evaluating the

enforceability of smart contracts today, those using smart contracts in the future may not need to

rely on laws that pre-date the development of blockchain technology. Arizona and Nevada

already have amended their respective state versions of UETA to explicitly incorporate

7 See, e.g., UCC § 2-201.
8 See, e.g., Lumhoo v. Home Depot USA, Inc., 229 F. Supp. 2d 121, 160 (E.D.N.Y. 2002) (holding that the

plaintiffs adduced sufficient evidence to support an inference that the parties formed an oral contract for payment by their
employer at an overtime rate for any hours worked in excess of eight hours per day).

9 Uniform Electronic Transactions Act (Unif. Law Comm’n 1999)—New York, Illinois and Washington have
state-specific laws relating to the validity of electronic transactions.

10 Id. § 2(6).
11 Id. § 2 cmt. 5.
12 15 U.S.C. § 7001(h).
13 15 U.S.C. § 7006(3).

 5

blockchains and smart contracts.14 The fact that these states have adopted decidedly different

definitions of those critical terms suggests that as more states follow their lead, there may be

increasing pressure to adopt unified definitions to reflect blockchain and smart contract

developments.

Given the existing legal frameworks for recognizing electronic contracts, it is quite likely that a

court today would recognize the validity of code that executes provisions of a smart contract—

what we have classified as ancillary smart contracts. There is also precedent to suggest that a

code-only smart contract might enjoy similar legal protection. The challenge to widespread smart

contract adoption may therefore have less to do with the limits of the law than with potential

clashes between how smart contract code operates and how parties transact business. We set

forth below certain of these challenges:

How Can Non-technical Parties Negotiate, Draft and Adjudicate Smart Contracts?

A key challenge in the widespread adoption of smart contracts is that parties will need to rely on a

trusted, technical expert to either capture the parties’ agreement in code or confirm that code

written by a third party is accurate. While some analogize this to hiring a lawyer to explain “the

legalese” of a traditional text-based contract, the analogy is misplaced. Non-lawyers typically can

understand simple short-form agreements as well as many provisions of longer agreements,

especially those setting forth business terms. But a non-programmer would be at a total loss to

understand even the most basic smart contract and is therefore significantly more beholden to an

expert to explain what the contract “says.”

To some extent, the inability of contracting parties to understand the smart contract code will not

be a hindrance to entering into ancillary code agreements. This is because for many basic

functions, text templates can be created and used to indicate what parameters need to be

entered and how those parameters will be executed. For example, assume a simple smart

contract function that extracts a late fee from a counterparty’s wallet if a defined payment is not

received by a specified date. The text template could prompt the parties to enter the amount of

the expected payment, the due date and the amount of the late fee. However, a party may want

to confirm that the underlying code actually will perform the functions specified in the text, and

that there are no additional conditions or parameters—especially where the template disclaims

any liability arising from the accuracy of the underlying code. This review will require a trusted

third party with programming expertise.

In cases where such templates do not exist, and new code must be developed, the parties will

need to communicate the intent of their agreement to a programmer. Simply handing that

programmer a copy of the legal agreement would be inefficient since it would require the

programmer to try and decipher a legal document. Parties relying on ancillary smart contracts

therefore may need to draft a separate “term sheet” of functionality that the smart contract should

perform and that can be provided to the programmer.

14 See 2017 Ariz. HB 2417 44-7061 and Nev. Rev. Stat. Ann. § 719.090.

 6

The parties also may want written representations from the programmer that the code performs

as contemplated. The net result is that for customized arrangements that do not rely on an

existing template, the parties may need to enter into a written agreement with the smart contract

programmer, not unlike the contract that parties may enter into with a provider of services for

Electronic Data Interchange (EDI) transactions today.

Insurance companies could also create policies to protect contracting parties from the risk that

smart contract code does not perform the functions specified in the text of an agreement.

Although the parties would also want to review (or have third parties review) the code, insurance

can provide additional protection given that the parties might miss errors when reviewing the

code. The parties would also take some additional comfort from the fact that the insurance

company likely conducted its own code audit before agreeing to insure the code.

Code-only smart contracts used for business-to-consumer transactions could pose an additional

set of issues that will need to be addressed. Courts are wary of enforcing agreements where the

consumer did not receive adequate notice of the terms of the agreement,15 and may be hesitant

to enforce a smart contract where the consumer was not also provided with an underlying text

agreement that included the complete terms.

Finally, as the validity or performance of smart contracts increasingly become adjudicated, courts

may need a system of court-appointed experts to help them decipher the meaning and intent of

the code. Today, parties routinely use their own experts when technical issues are at the center

of a dispute. While both federal courts and many state courts have the authority to appoint their

own experts, they rarely exercise that authority.16 That approach may need to change if the

number of standard contract disputes that center on interpreting smart contract code increases.

Smart Contracts and the Reliance on “Off-chain” Resources

Many smart contract-proposed use-cases assume that the smart contract will receive information

or parameters from resources that are not on the blockchain itself—so-called off-chain resources.

For example, assume a crop insurance smart contract is programmed to transfer value to an

insured party if the temperature falls below 32 degrees at any point. The smart contract will need

to receive that temperature data from an agreed source. This presents two issues. First, smart

contracts do not have the ability to pull data from off-chain resources; rather, that information

needs to be “pushed” to the smart contract. Second, if the data at issue is in constant flux, and

since the code is replicated across multiple nodes across the network, different nodes may be

receiving different information, even just a few seconds apart. In our example, Node-1 may

receive information that the temperature is 31.9 degrees, while Node-2 may receive information

that the temperature is actually 32 degrees. Given that consensus is required across the nodes

15 See, e.g., Nicosia v. Amazon.com, Inc., 834 F.3d 220 (2d Cir. 2016) (reversing the district court’s dismissal

for failure to state a claim and holding that reasonable minds could disagree as to whether Amazon provided the
consumer with reasonable notice of the mandatory arbitration provision at issue).

16 See Charles Alan Wright & Arthur R. Miller, Federal Practice and Procedure, Section 6304 (3d ed. supp.
2011) (“In fact, the exercise of Rule 706 powers is rare under virtually any circumstances. This is, at least in part, owing to
the fact that appointing an expert witness increases the burdens of the judge, increases the costs to the parties, and
interferes with the adversarial control over the presentation of evidence.”), and Stephanie Domitrovich, Mara L. Merino &
James T. Richardson, State Trial Judge Use of Court Appointed Experts: Survey Results and Comparisons, 50
Jurimetrics J. 371, 373–74 (2010).

 7

for a transaction to be validated, such fluctuations can cause the condition to be deemed “not

satisfied.”

Contracting parties will be able to solve this conundrum by using a so-called “oracle.” Oracles are

trusted third parties that retrieve off-chain information and then push that information to the

blockchain at predetermined times. In the foregoing example, the oracle would monitor the daily

temperature, determine that the freezing event has occurred and then push that information to the

smart contract.

Although oracles present an elegant solution to accessing off-chain resources, this process adds

another party with whom the parties would need to contract to effectuate a smart contract, thus

somewhat diluting the decentralized benefits of smart contracts. It also introduces a potential

“point of failure.” For example, an oracle might experience a system flaw and be unable to push

out the necessary information, provide erroneous data or simply go out of business. Smart

contracts will need to account for these eventualities before their adoption can become more

widespread.

What is the “Final” Agreement Between the Parties?

When analyzing traditional text-based contracts, courts will examine the final, written document to

which the parties have agreed in order to determine whether the parties are in compliance or

breach. Courts have long emphasized that it is this final agreement that represents the mutual

intent of the parties—the “meeting of the minds.”

In the case of code-only smart contracts, the code that is executed—and the outcome it

produces—represents the only objective evidence of the terms agreed to by the parties. In these

cases, email exchanges between the parties as to what functions the smart contract “should”

execute, or oral discussions to that effect, likely would yield to the definitive code lines as the

determinative manifestation of the parties’ intent.

With respect to ancillary smart contracts, a court likely would look at the text and code as a

unified single agreement. The issue becomes complicated when the traditional text agreement

and the code do not align. In the crop insurance example described above, assume the text of an

agreement specifies that an insurance payout will be made if the temperature falls below 32

degrees, while the smart contract code triggers the payment if the temperature is equal to or

below 32 degrees. Assuming that the text agreement does not state whether the text or code

controls in the event of an inconsistency, courts will need to determine—perhaps on a case-by-

case basis—whether the code should be treated as a mutually agreed amendment to the written

agreement or whether the text of the agreement should prevail. In some respects, the analysis

should be no different than a case where the provisions of a main agreement differ from what is

reflected in an attached schedule or exhibit. The fact that here the conflict would be between text

and computer code and not two text documents should not be determinative, but courts may take

a different view.

One solution will be for parties to use a text based contract where the parameters that trigger the

smart contract execution are not only visible in the text but actually populate the smart contract. In

our example, “less than 32 degrees” would not only be seen in the text, but also would create the

parameter in the smart contract itself, thereby minimizing the chances of any inconsistency.

 8

The Automated Nature of Smart Contracts

One of the key attributes of smart contracts is their ability to automatically and relentlessly

execute transactions without the need for human intervention. However, this automation, and the

fact that smart contracts cannot easily be amended or terminated unless the parties incorporate

such capabilities during the creation of the smart contract, present some of the greatest

challenges facing widespread adoption of smart contracts.

For example, with traditional text contracts, a party can easily excuse a breach simply by not

enforcing the available penalties. If a valued customer is late with its payment one month, the

vendor can make a real-time decision that preserving the long-term commercial relationship is

more important than any available termination right or late fee. However, if this relationship had

been reduced to a smart contract, the option not to enforce the agreement on an ad hoc basis

likely would not exist. A late payment will result in the automatic extraction of a late fee from the

customer’s account or the suspension of a customer’s access to a software program or an

internet-connected device if that is what the smart contract was programmed to do. The

automated execution provided by smart contracts might therefore not align with the manner in

which many businesses operate in the real world.

Similarly, in a text-based contractual relationship, a party may be willing to accept, on an ad hoc

basis, partial performance to be deemed full performance. This might be because of an interest in

preserving a long-term relationship or because a party determines that partial performance is

preferable to no performance at all. Here, again, the objectivity required for smart contract code

might not reflect the realities of how contracting parties interact.

Amending and Terminating Smart Contracts

At present, there is no simple path to amend a smart contract, creating certain challenges for

contracting parties. For example, in a traditional text-based contract, if the parties have mutually

agreed to change the parameters of their business deal, or if there is a change in law, the parties

quickly can draft an amendment to address that change, or simply alter their course of conduct.

Smart contracts currently do not offer such flexibility. Indeed, given that blockchains are

immutable, modifying a smart contract is far more complicated than modifying standard software

code that does not reside on a blockchain. The result is that amending a smart contract may yield

higher transaction costs than amending a text-based contract, and increases the margin of error

that the parties will not accurately reflect the modifications they want to make.

Similar challenges exist with respect to terminating a smart contract. Assume a party discovers

an error in an agreement that gives the counterparty more rights than intended, or concludes that

fulfilling its stated obligations will be far more costly than it had expected. In a text-based contract,

a party can engage in, or threaten, so-called “efficient breach,” i.e., knowingly breaching a

contract and paying the resulting damages if it determines that the cost to perform is greater than

the damages it would owe. Moreover, by ceasing performance, or threatening to take that step, a

party may bring the counterparty back to the table to negotiate an amicable resolution. Smart

contracts do not yet offer analogous self-help remedies.

Projects are currently underway to create smart contracts that are terminable at any time and

more easily amended. While in some ways this is antithetical to the immutable and automated

 9

nature of smart contracts, it reflects the fact that smart contracts only will gain commercial

acceptance if they reflect the business reality of how contracting parties act.

Objectivity and the Limits of Incorporating Desired Ambiguity Into Smart Contracts

The objectivity and automation required of smart contracts can run contrary to how business

parties actually negotiate agreements. During the course of negotiations, parties implicitly engage

in a cost-benefit analysis, knowing that at some point there are diminishing returns in trying to

think of, and address, every conceivable eventuality. These parties no longer may want to expend

management time or legal fees on the negotiations, or may conclude that commencing revenue

generating activity under an executed contract outweighs addressing unresolved issues. Instead,

they may determine that if an unanticipated event actually occurs, they will figure out a resolution

at that time. Similarly, parties may purposefully opt to leave a provision somewhat ambiguous in

an agreement in order to give themselves the flexibility to argue that the provision should be

interpreted in their favor. This approach to contracting is rendered more difficult with smart

contracts where computer code demands an exactitude not found in the negotiation of text-based

contracts. A smart contract cannot include ambiguous terms nor can certain potential scenarios

be left unaddressed. As a result, parties to smart contracts may find that the transaction costs of

negotiating complex smart contracts exceed that of a traditional text-based contracts.

It will take some time for those adopting smart contracts in a particular industry to determine

which provisions are sufficiently objective to lend themselves to smart contract execution. As

noted, to date, most smart contracts perform relatively simple tasks where the parameters of the

“if/then” statements are clear. As smart contracts increase in complexity, parties may disagree on

whether a particular contractual provision can be captured through the objectivity that a smart

contract demands.

Do Smart Contracts Really Guarantee Payment?

One benefit often touted of smart contracts is that they can automate payment without the need

for dunning notices or other collection expenses and without the need to go to court to obtain a

judgment mandating payment. While this is indeed true for simpler use cases, it may be less

accurate in complex commercial relationships. The reality is that parties are constantly moving

funds throughout their organization and do not “park” total amounts that are due on a long-term

contract in anticipation of future payment requirements. Similarly, a person obtaining a loan is

unlikely to keep the full loan amount in a specified wallet linked to the smart contract. Rather, the

borrower will put those funds to use, funding the necessary repayments on an ad hoc basis.

If the party owing amounts under the smart contract fails to fund the wallet on a timely basis, a

smart contract looking to transfer money from that wallet upon a trigger event may find that the

requisite funds are not available. Implementing another layer into the process, such as having the

smart contract seek to pull funds from other wallets or having that wallet “fund itself” from other

sources, would not solve the problem if those wallets or sources of funds also lack the requisite

payment amounts. The parties might seek to address this issue through a text-based requirement

that a wallet linked to the smart contract always have a minimum amount, but that solution simply

would give the party a stronger legal argument if the dispute was adjudicated. It would not render

the payment operation of the smart contract wholly automatic. Thus, although smart contracts will

 10

render payments far more efficient, they may not eliminate the need to adjudicate payment

disputes.

Risk Allocation for Attacks and Failures

Smart contracts introduce an additional risk that does not exist in most text-based contractual

relationships—the possibility that the contract will be hacked or that the code or protocol simply

contains an unintended programming error. Given the relative security of blockchains, these

concepts are closely aligned; namely, most “hacks” associated with blockchain technology are

really exploitations of an unintended coding error. As with many bugs in computer code, these

errors are not glaring, but rather become obvious only once they have been exploited. For

example, in 2017 an attacker was able to drain several multi-signature wallets offered by Parity of

$31 million in ether.17 Multi-signature wallets add a layer of security because they require more

than one private key to access the wallet. However, in the Parity attack, the attacker was able to

exploit a flaw in the Parity code by reinitializing the smart contract and making himself or herself

the sole owner of the multi-signature wallets. Parties to a smart contract will need to consider how

risk and liability for unintended coding errors and resulting exploitations are allocated between the

parties, and possibly with any third party developers or insurers of the smart contract.

Governing Law and Venue

One of the key promises of blockchain technology, and by extension smart contracts, is the

development of robust, decentralized and global platforms. However, global adoption means that

parties may be using a smart contract across far more jurisdictions than might exist in the case of

text-based contracts. The party offering terms under a smart contract would therefore be best-

served by specifying the governing law and venue for that smart contract. A governing law

provision specifies what substantive law will apply to the interpretation of the smart contract,

whereas a venue clause specifies which jurisdiction’s courts will adjudicate the dispute. In cases

where governing law or venue is not specified, a plaintiff may be relatively unconstrained in

choosing where to file a claim or in arguing which substantive law should apply given the wide

range of jurisdictions in which a smart contract might be used. Given that many early disputes

concerning smart contracts will be ones of first-impression, contracting parties will want some

certainty surrounding where such disputes will be adjudicated.

Given that we are at the nascent stages of smart contract adoption, best practices for

implementing such code is still evolving. However, the checklist below should help developers

design effective smart contracts and guide companies who plan to use them.

• For now, parties entering into any type of contractual arrangement would be best served

using a hybrid approach that combines text and code. As noted, there are strong

arguments that code-only smart contracts should be enforceable, at least under state

contract law in the U.S. However, until there is greater clarity on their validity and

enforceability, code-only smart contracts should be used only for simpler transactions.

Parties will continue to want text-versions of agreements so they can read the agreed-

17 See Haseeb Qureshi, “A Hacker Stole $31M of Ether—How it Happened, and What it Means for Ethereum,”

FreeCodeCamp, (July 20, 2017), available here.

https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce

 11

upon terms, memorialize terms that smart contracts are not equipped to address and

have a document they know a court will enforce.

• In a hybrid contract using text and code, the text should clearly specify the smart contract

code with which it is associated, and the parties should have full visibility into the

variables that are being passed to the smart contract, how they are defined and the

transaction events that will trigger execution of the code.

• When relying on oracles for off-chain data, the parties should address what would

happen if the oracle is unable to push out the necessary data, provides erroneous data or

simply goes out of business.

• The parties should consider risk allocation in the event of a coding error.

• The text agreement accompanying the code should specify the governing law and venue,

as well as the order of precedence between text and code in the event of a conflict.

• The text agreement should include a representation by each party that they have

reviewed the smart contract code, and that it reflects the terms found in the text

agreement. Although such a representation cannot force a party to examine the code, it

will help the counterparty defend against a claim that the code was never reviewed.

Parties may also choose to insure against the risk that the code contains errors. As

noted, parties may need to involve third-party experts to review the code.

Today, smart contracts are a prototypical example of “Amara’s Law,” the concept articulated by

Stanford University computer scientist Roy Amara that we tend to overestimate new technology in

the short run and underestimate it in the long run. Although smart contracts will need to evolve

before they are widely adopted for production use in complex commercial relationships, they have

the impact to revolutionize the reward and incentive structure that shapes how parties contract in

the future. To that end, and when thinking about smart contracts, it is important not to simply think

how existing concepts and structures can be ported over to this new technology. Rather, the true

revolution of smart contracts will come from entirely new paradigms that we have not yet

envisioned.

